(1/9^x)+(1/3^x)=6

Simple and best practice solution for (1/9^x)+(1/3^x)=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/9^x)+(1/3^x)=6 equation:



(1/9^x)+(1/3^x)=6
We move all terms to the left:
(1/9^x)+(1/3^x)-(6)=0
Domain of the equation: 9^x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 3^x)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
1/9^x+1/3^x-6=0
We calculate fractions
3x/27x^2+9x/27x^2-6=0
We multiply all the terms by the denominator
3x+9x-6*27x^2=0
We add all the numbers together, and all the variables
12x-6*27x^2=0
Wy multiply elements
-162x^2+12x=0
a = -162; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-162)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-162}=\frac{-24}{-324} =2/27 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-162}=\frac{0}{-324} =0 $

See similar equations:

| -20=3u-2 | | 3(y-2)-4y=2(y-9 | | x2–25=6x–9 | | 9=-2(a+4)9a | | 8x-21=-5 | | 215=q-396 | | 4x-10=5x-22=3x+2 | | 5x+2(7−x)=23 | | 6t+3-2=6 | | -26=-8y+6(y-2) | | 4(y+3)+2y=7 | | 12y=1.2 | | 68=3x+17 | | 3y=-4+2 | | -1=-7y+5(y+3) | | 3z-1/3-4=4z+1/4-5z | | 12=t-47 | | 8x+64=-9 | | -72=w+-5 | | x+3-(2x-4)=4+2(3x-1) | | (-10)(5x)(-8)=x | | 6x=7=8x-13 | | 43=3c-5 | | -6+c=38 | | (X+3)^2=x^2+3^2 | | 4=-7+m | | 2x+5=8x+11 | | -30-n=12 | | X-(4x-8)=5x-(x+21) | | 2x+2(2x-2)=68 | | 80=4v+12 | | 6g-10=2(3g-5) |

Equations solver categories